第六章 金属基复合材料的界面及其表征.ppt

第六章 金属基复合材料的界面及其表征.ppt

  1. 1、本文档共70页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
第6章 金属基复合材料的 界面及其优化设计 6.1界面的概念 金属基复合材料中增强体与金属基体接触构成的界面,是一层具有一定厚度(纳米以上)、结构随基体和增强体而异的、与基体有明显差别的新相——界面相(界面层)。它是增强相和基体相连接的“纽带”,也是应力及其他信息传递的桥梁。界面是金属基复合材料极为重要的微结构,其结构与性能直接影响金属基复合材料的性能。 金属基复合材料的基体一般是金属合金,此种复合材料的制备需在接近或超过金属基体熔点的高温下进行。金属基体与增强体在高温复合时易发生不同程度的界面反应;金属基体在冷却、凝固、热处理过程中还会发生元素偏聚、扩散、固溶、相变等。这些均使金属基复合材料界面区的结构十分复杂。 在金属基复合材料界面区出现材料物理性质(如弹性模量、热膨胀系数、导热率、热力学参数)和化学性质等的不连续性,使增强体与基体金属形成了热力学不平衡的体系。因此,界面的结构和性能对金属基复合材料中应力和应变的分布,导热、导电及热膨胀性能,载荷传递,断裂过程都起着决定性作用。 根据上面的三种结合力,金属基复合材料中的界面结合可以分为六种 6.2.2 界面分类及界面模型 6.2.2.1 界面分类 上述几种金属基复合材料界面(机械结合、溶解与润湿结合、交换反应结合、氧化物结合和混合结合)可以分成I、Ⅱ、Ⅲ三种类型:I型界面表示增强体与基体金属既不溶解也不反应(包括机械结合和氧化物结合);Ⅱ型界面表示增强体与基体金属之间可以溶解,但不反应(包括溶解与润湿结合);Ⅲ型界面表示增强体与基体之间发生反应并形成化合物(包括交换反应结合和混合结合)。见表6-1所示。 表6-1中伪Ⅰ型(pseudo-classⅠsystem)界面的含义是:热力学指出,该种体系的增强体与基体之间应该发生化学反应,但基体金属的氧化膜阻止反应的进行。反应能否进行,取决于氧化膜的完整程度,当氧化膜尚完整时,属于Ⅰ型界面;当工艺过程中温度过高或保温时间过长而使基体氧化膜破坏时,组分之间将发生化学反应,变为Ⅲ型界面。具有伪I型界面特征的复合材料系在工艺上宜采用固态法(如热压、粉末冶金、扩散结合),而不宜采用液态浸渗法,以免变为Ⅲ型界面而损伤增强体。 6.2.2.2 界面模型 在早期的研究中,将复合材料界面抽象为:界面处无反应、无溶解,界面厚度为零,复合材料性能与界面无关;稍后,则假设界面强度大于基体强度,这是所谓的强界面理论。强界面理论认为:基体最弱,基体产生的塑性变形将使纤维至纤维的载荷传递得以实现。复合材料的强度受增强体强度的控制。预测复合材料力学性能的混合物定律是根据强界面理论导出的。由上述可见,对于不同类型的界面,应当有与之相应的不同模型。 (1) I型复合材料的界面模型 Cooper和Kelly(1968)提出,I型界面模型是界面存在机械互锁,且界面性能与增强体和基体均不相同;复合材料性能受界面性能的影响,影响程度取决于界面性能与基体、纤维性能差异程度的大小;I型界面模型包括机械结合和氧化物结合两种界面类型。 (2) Ⅱ、Ⅲ型复合材料的界面理论模型 Ⅱ、Ⅲ型界面模型认为复合材料的界面具有既不同于基体也不同于增强体的性能,它是有一定厚度的界面带,界面带可能是由于元素扩散、溶解造成,也可能是由于反应造成。 Ⅱ、Ⅲ型界面控制复合材料的10类性能,即基体拉伸强度;复合材料性能的因素(σm);纤维拉伸强度(σf);反应物拉伸强度(σr);基体/反应物界面拉伸强度(σmi);纤维/反应物界面拉伸强度(σfi);基体剪切强度(τm);纤维剪切强度(τfi);反应物剪切强度(τr);基体/反应物界面剪切强度(τmi)和纤维/反应界面剪切强度(τfi),见图6-2所示。 由上述研究结果可见,在Ⅱ、Ⅲ型界面的复合材料中,反应物裂纹是否对复合材料性能发生影响,取决于反应物的厚度。影响反应物临界厚度的因素如下。 ① 基体的弹性极限。 ② 纤维的塑性。 6.2.3 界面的物理化学特性 6.2.3.1 润湿现象 不同的液滴放到不同的固体表面上,有时液滴会立即铺展开来覆盖固体的表面,这一现象称为润湿现象或浸润;有时液体仍然团聚成球状不铺开,这一现象称为润湿不好或不浸润。液态基体在制造条件下能润湿固态增强物是制造性能良好的金属基复合材料的必要条件。在固体表面上液滴保持力学平衡时杨氏方程式成立(见图6-5)。 式中:γSV、γSL、γLV分别为液-汽、固-汽、表面张力和固-液界面张力;θ-液体对固体的浸润角或接触角。 若

文档评论(0)

huaz15718 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档