4微热电致冷器之特性及发展.docVIP

  1. 1、本文档共10页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
4微热电致冷器之特性及发展

散热设计(四)微热电致冷器之特性及发展 晨怡热管 /news/42/ 2006-10-2 1:29:47 日期:2005-11-6 23:38:44 来源:电子设计资源网 查看:[大 中 小] 作者:刘君恺 热度: 随着网络及通讯技术的快速发展,对讯号传输的品质及速度要求越来越高,器件性能提升,而封装的趋势朝向轻薄短小,造成器件的发热密度不断提升。如果热无法迅速散去,会造成产品可靠度降低,甚至损毁的严重后果。对于光通讯器件而言,除了散热,温度的控制更为重要,例如温度的变化会影响主动器件如光收发器Laser Diode或Tunable laser的输出功率稳定度而影响讯号品质,也会造成被动器件如AWG 等的光波长偏移而失效。许多高功率电子以及光通讯器件在研发过程中,热的问题已成为技术发展的瓶颈。以CPU为例,到2005年时,CPU发热量会从现在的61W增加到96W,传统的散热方式如散热片及风扇等,已无法满足需求。而水冷及冷冻循环则有成本高、体积大以及污染等问题,因此无噪音、无污染、冷却温度低的热电模块开始受到重视。 热电器件又称致冷器,目前应用的热电器件是由半导体所组成的一种冷却装置,于1960年左右才开始出现真正的应用装置,然而其理论基础Peltier Effect却可追溯到19世纪。于1821年德国科学家Thomas Seeback观察到,当两种不同的金属构成一闭合回路,若在两接合点存在有温度差时,则回路中将产生电流,此种效应被命名为Seeback Effect,这也成为了温差发电技术的基础。而到了1834 年,才由物理学家Jean Peltier,发现不同的介质交接处,因应电流方向的不同会产生致冷或加热的效果,其产生冷热温差之幅度由电流大小而定,这个现象则称之为Peltier Effect,是为Seeback Effect的逆效应。其说明如图一所示, X及Y两种不同的金属导线构成一封闭回路,在通上电源之后,A点的热量将被移到B点,而导致A点温度降低,B点温度升高。直到近代,随着半导体的蓬勃发展,利用半导体的特性,可使材料的热电转换性能大幅提升,如Bi2Te3、PbTe 等材料的应用,以及各种新制程如长晶、烧结等技术的开发,使得商业化的产品有了更多的应用。于是在热电技术上开始了蓬勃的发展。 (图一) Peltier Effect原理示意图 目前热电器件在电子及光电器件方面已有重要的应用,而新的材料及设计技术也不断的在发展,以进一步提升微热电器件的性能。本文将详细介绍热电器件的结构、特性、应用以及未来的发展方向。 热电器件之结构 (图二)为一个实际应用之热电器件的典型结构,从图中可看出其主要结构包含有上下两片陶瓷板以及中间的N型和P型半导体材料(主要材料为碲化铋Bismuth Telluride),其中N型和P型半导体材料之颗粒依序排列,再以一般的导体物质将N型和P型颗粒串联,而使之成为一完整线路,串联用的导体材料通常是铜、铝或是其它金属,最后再由两片陶瓷片,将N、P材料像夹心饼干一样地包夹起来。因此在热电器件结构中最重要也最基本的单元便是热电偶(thermocouple),而数个热电偶串联便组成热电堆(thermopile),所以将之阐述地更详细点,即是:一个热电偶包含有两个热电单元,其各为N型和P型的半导体,而若有多组N型和P型的半导体相串联,此时则称为热电堆。现针对此热电器件,将其各部结构做详细地说明。 (图二) 热电模块结构及作用示意图 1.基板: 具电性隔离、提供冷热端面之传导、增强热电致冷器结构强度之作用。常用陶瓷材料制成,如Al2O3(氧化铝)、BeO(氧化铋)、AIN(氮化铝)等。其传导系数以及电阻系数如(表一)所示。从(表一)中不难看出,在这些材料中,以BeO (氧化铋)、AIN(氮化铝)的热传导率较高,然而虽然以BeO (氧化铋)、AIN(氮化铝)的热传导率较高,但因BeO具有毒性而较少人使用;而另一方面AIN之制作成本又为Al2O3十倍以上,故一般在陶瓷机板材料的选用上以Al2O3的使用较为广泛。 (表一) 常用陶瓷基板之材料系数 2.热电材料: 是一种将电能与热能交互转换的材料,其材料需具备有高导电性的特质,以避免因电阻太大而引起电功率之损失,此材料同时亦需为高热阻物质,以不使冷热两端的温差因热传导而改变。因此,其材料不仅需要N型和P型半导体特性,还要能够根据掺入杂质的不同,进而改变半导体内因温度差造成的电动势,而其导电率和导热率均能满足前述的需求。目前常用的热电材料是以碲化铋为基体的三元固溶体合金,其中P 型材是Bi2Te3-Sb2Te3,N型是Bi2Te3-Bi2Se3,采用垂直区熔法提取晶体材料。 目前热电材料的选择可依其运作温度分为三类: (1).碲化铋(B

文档评论(0)

peain + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档