理论力学双语教学第十七章拉格朗日方程.ppt

理论力学双语教学第十七章拉格朗日方程.ppt

  1. 1、本文档共61页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
理论力学双语教学第十七章拉格朗日方程

1   积分,得: Integration gives 代入初始条件,t =0 时, 得 Using as the initial conditions t =0, we obtain . 故: Therefore,   [Example 2] A slider A is connected to a spring of stiffness k and mass m1. They can slip on the smooth horizontal plane. Further, a simple pendulum is connected to the slider A, the length is l, the mass of the pendulum bob is m2. Determine the differential equation of motion of this system. [例2] 与刚度为k 的弹簧相连的滑块A,质量为m1,可在光滑水平面上滑动。滑块A上又连一单摆,摆长l , 摆锤质量为m2 ,试列出该系统的运动微分方程。   解:将弹簧力计入主动力,则系统成为具有完整、理想约束的二自由度系统。保守系统。取x , ?为广义坐标,x 轴 原点位于弹簧自然长度位置, ? 逆时针转向为正。 Solution This system has two degree of freedom. All constraints are ideal ones. The system is a potential system. We can choose x and ? as generalized coordinates, The zero point of the axis x is at the place of the common length of the spring. For an anticlockwise displacement of B ? is chosen to be positive.     系统动能: The kinetic energy of the system is   The potential energy of the system is (choosing the common length of the spring as the zero point of the potential energy) 系统势能:(以弹簧原长为弹性势能零点,滑块A所在平面为重力势能零点)   拉格朗日函数: The Lagranges function is   代入: 并适当化简得: results after simplification in Substitution into   These are the differential equations of motion of the system. 系统的运动微分方程。 If the system is moving with a small amplitude around the equilibrium position, we can use ? 1o, cos? 1and sin? ?. Neglecting all terms of higher then first order, we get 若系统在平衡位置附近作微幅运动,此时? 1o, cos? 1, sin? ?,略去二阶以上无穷小量,则   上式为系统在平衡位置(x =0, ? =0)附近微幅运动的微分方程。 These are the differential equations of motion for small amplitude around the equilibrium position (x =0, ? =0). §17-3 Integrals of the Lagranges equations of the second kind §17-3 拉格朗日第二类方程的积分 For a potential system a first integration of the Lagranges equa

您可能关注的文档

文档评论(0)

2105194781 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档