常系数线性常微分方程2知识讲解.ppt

  1. 1、本文档共48页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
思考与练习 时可设特解为 时可设特解为 提示: 1 . (填空) 设 2. 求微分方程 的通解 (其中 为实数 ) . 解: 特征方程 特征根: 对应齐次方程通解: 时, 代入原方程得 故原方程通解为 时, 代入原方程得 故原方程通解为 3. 已知二阶常微分方程 有特解 求微分方程的通解 . 解: 将特解代入方程得恒等式 比较系数得 故原方程为 对应齐次方程通解: 原方程通解为 振动问题 当重力与弹性力抵消时, 物体处于 平衡状态, 例1. 质量为m的物体自由悬挂在一端固定的弹簧上, 力作用下作往复运动, 解: 阻力的大小与运动速度 下拉物体使它离开平衡位置后放开, 若用手向 物体在弹性力与阻 取平衡时物体的位置为坐标原点, 建立坐标系如图. 设时刻 t 物位移为 x(t). (1) 自由振动情况. 弹性恢复力 物体所受的力有: (虎克定律) 成正比, 方向相反. 建立位移满足的微分方程. * 常系数高阶 线性微分方程 一. 常系数线性齐次微分方程 二. 常系数线性非齐次微分方程 第六章 常系数 齐次线性微分方程 基本思路: 求解常系数线性齐次微分方程 求特征方程(代数方程)之根 转化 第六章 二阶常系数齐次线性微分方程: 和它的导数只差常数因子, 代入①得 称②为微分方程①的特征方程, 1. 当 时, ②有两个相异实根 方程有两个线性无关的特解: 因此方程的通解为 ( r 为待定常数 ), ① 所以令①的解为 ② 则微分 其根称为特征根. 3. 当 时, 特征方程有一对共轭复根 这时原方程有两个复数解: 利用解的叠加原理 , 得原方程的线性无关特解: 因此原方程的通解为 小结: 特征方程: 实根 特 征 根 通 解 以上结论可推广到高阶常系数线性微分方程 . 若特征方程含 k 重复根 若特征方程含 k 重实根 r , 则其通解中必含对应项 则其通解中必含 对应项 特征方程: 例1. 的通解. 解: 特征方程 特征根: 因此原方程的通解为 例2. 求解初值问题 解: 特征方程 有重根 因此原方程的通解为 利用初始条件得 于是所求初值问题的解为 例3. 的通解. 解: 特征方程 特征根: 因此原方程通解为 例4. 解: 特征方程: 特征根 : 原方程通解: (不难看出, 原方程有特解 例5. 解: 特征方程: 即 其根为 方程通解 : 例6. 解: 特征方程: 特征根为 则方程通解 : 内容小结 特征根: (1) 当 时, 通解为 (2) 当 时, 通解为 (3) 当 时, 通解为 可推广到高阶常系数线性齐次方程求通解 . 思考与练习 求方程 的通解 . 答案: 通解为 通解为 通解为 思考题 为特解的 4 阶常系数线性齐次微分方程, 并求其通解 . 解: 根据给定的特解知特征方程有根 : 因此特征方程为 即 故所求方程为 其通解为 常系数非齐次线性微分方程 一、 二、 第六章 二阶常系数线性非齐次微分方程 : 根据解的结构定理 , 其通解为 非齐次方程特解 齐次方程通解 求特解的方法 根据 f (x) 的特殊形式 , 的待定形式, 代入原方程比较两端表达式以确定待定系数 . ① — 待定系数法 一、 ? 为实数 , 设特解为 其中 为待定多项式 , 代入原方程 , 得 (1) 若 ? 不是特征方程的根, 则取 从而得到特解 形式为 为 m 次多项式 . Q (x) 为 m 次待定系数多项式 (2) 若? 是特征方程的单根 , 为m 次多项式, 故特解形式为 (3) 若 ? 是特征方程的重根 , 是 m 次多项式, 故特解形式为 小结 对方程①, 此结论可推广到高阶常系数线性微分方程 . 即 即 当? 是特征方程的 k 重根 时, 可设 特解 例1. 的一个特解. 解: 本题 而特征方程为 不是特征方程的根 . 设所求特解为 代入方程 : 比较系数, 得 于是所求特解为 例2. 的通解. 解: 本题 特征方程为 其根为 对应齐次方程的通解为 设非齐次方程特解为 比较系数, 得 因此特解为 代入方程得 所求通解为 例3. 求解定解问题 解: 本题 特征方程为 其根为 设非齐次方程特解为 代入方程得 故 故对应齐次方程通解为 原方程通解为 由初始条件得 于是所求解为 解得 二、 第二步 求出如下两个方程的特解 分析思路: 第一步 将 f (x) 转化为 第三步 利用叠加原理求出原方程的特解 第四步 分析原方程特解的特点 第一步 利用欧拉公式将 f (x) 变形 第二步 求如下两方程的特解 是特征方程的 k 重根 ( k = 0, 1), 故 等式两边取共轭 : 为方程 ③ 的特解 . ② ③

文档评论(0)

youngyu0318 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档