计量经济学课件-离散选择变量培训资料.ppt

计量经济学课件-离散选择变量培训资料.ppt

  1. 1、本文档共56页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
计量经济学课件-离散选择变量; 为了深刻地理解二元选择模型,首先从最简单的线性概率模型开始讨论。线性概率模型的回归形式为: (7.1.1) 其中:N是样本容量;k是解释变量个数;xj为第j个个体特征的取值。例如,x1表示收入;x2表示汽车的价格;x3表示消费者的偏好等。设 yi 表示取值为0和1的离散型随机变量: 式(7.1.1)中ui为相互独立且均值为0的随机扰动项。; 令pi = P ( yi =1) ,那么 1 - pi = P ( yi =0) ,于是 (7.1.2) 又因为E(ui ) = 0 ,所以 E(yi ) = xi?,xi =(x1i , x2i ,…, xki ), ? =(?1 , ?2 ,…, ?k )?,从而有下面的等式: (7.1.3) ; 式(7.1.3)只有当xi? 的取值在(0,1)之间时才成立,否则就会产生矛盾,而在实际应用时很可能超出这个范围。因此,线性概率模型常常写成下面的形式: (7.1.4) 此时就可以把因变量看成是一个概率。 那么扰动项的方差为: (7.1.5) 或 (7.1.6) ; 由此可以看出,误差项具有异方差性。异方差性使得参数估计不再是有效的,修正异方差的一个方法就是使用加权最小二乘估计。但是加权最小二乘法无法保证预测值?在(0,1)之内,这是线性概率模型一个严重的弱点。由于上述问题,我们考虑对线性概率模型进行一些变换,由此得到下面要讨论的模型。 假设有一个未被观察到的潜在变量yi*,它与xi之间具有线性关系,即 (7.1.7) 其中: ui*是扰动项。yi和yi*的关系如下: (7.1.8); yi*大于临界值0时,yi =1;小于等于0时,yi =0。这里把临界值选为0,但事实上只要xi包含有常数项,临界值的选择就是无关的,所以不妨设为0。这样 (7.1.9) 其中:F是ui*的分布函数,要求它是一个连续函数,并且是单调递增的。因此,原始的回归模型可以看成如下的一个回归模型: (7.1.10) 即yi关于它的条件均值的一个回归。; 分布函数的类型决定了二元选择模型的类型,根据分布函数F的不同,二元选择模型可以有不同的类??,常用的二元选择模型如表7.1所示: 表7.1 常用的二元选择模型 ; 二元选择模型一般采用极大似然估计。似然函数为 (7.1.11) 即 (7.1.12) 对数似然函数为 (7.1.13) ; 对数似然函数的一阶条件为 (7.1.14) 其中:fi 表示概率密度函数。那么如果已知分布函数和密度函数的表达式及样本值,求解该方程组,就可以得到参数的极大似然估计量。例如,将上述3种分布函数和密度函数代入式(7.1.14)就可以得到3种模型的参数极大似然估计。但是式(7.1.14) 通常是非线性的,需用迭代法进行求解。 二元选择模型中估计的系数不能被解释成对因变量的边际影响,只能从符号上判断。如果为正,表明解释变量越大,因变量取1的概率越大;反之,如果系数为负,表明相应的概率将越小。 ; 例7.1 二元选择模型实例 考虑Greene 给出的斯佩克特和马泽欧(1980)的例子,在例子中分析了某种教学方法对成绩的有效性。因变量(GRADE)代表在接受新教学方法后成绩是否改善,如果改善为1,未改善为0。解释变量(PSI)代表是否接受新教学方法,如果接受为1,不接受为0。还有对新教学方法量度的其他解释变量:平均分数(GPA)和测验得分(TUCE),来分析新的教学方法的效果。; (1)模型的估计 从Equation S

您可能关注的文档

文档评论(0)

135****9653 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档