完整参考内容star文章类优化mf01_10_fluid1.ppt

完整参考内容star文章类优化mf01_10_fluid1.ppt

  1. 1、本文档共31页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Transonic/Supersonic Multi-Objective Optimisation of X31 Wing Planform Transonic/Supersonic Multi-Objective Optimisation of X31 Wing Planform J.Grashof EADS-M, Aerodynamic Simulation, Ottobrunn, Germany (European Aeronautic Defence and Space Company, Military Aircraft) The present study has been carried out within the EU funded project AEROSHAPE and is presented with the agreement of the partners and the Commission. Contents X31 configuration, wing optimisation objectives Wing parameterisation, output quantities Computational grid, flow solver Multi-objective evolution methods MOGA and MMES modeFRONTIER process flow chart, RSM tests Optimisations by MMES, SMOGA and FMOGA Selected optima Conclusions Appendix: SCT study, handling of constraints X31 experimental fighter aircraft (USA/Germany) X31 Thrust vectoring X31 Example for high manoeuvre performance: the “Herbst curve” Two design points have been chosen. 1. Transonic case: M=0.7, H=6 km, cL=0.95 (reasonable sustained turning rate, i.e. n=3.5g with a stagnation pressure of q=16,197N/m2). This results in an angle-of-attack of a=17o, a value fixed for the transonic case. The flap deflection will be fixed at 0o. Objective: the lift force, i.e. cL? Areaorig, instead of cL. . Optimisation Objectives 2. Supersonic case: M=1.4, H=10 km, cL=0.07 (n=1g, q=36,363 N/m2). Objective: the lift force, i.e. cL? Areaorig, instead of cL. Lift achieved by both the wing incidence ? and the flap setting ? used for trimming in order to reach a moment coefficient of cM?0. Unrealistic planforms avoided for the present wing-alone case: cM -condition replaced by a weaker constraint (main trimming of the complete aircraft achieved by the canard not simulated at present). Reference axis for cM at center of gravity, i.e. 2.9m downstream of the wing apex. Additional objective: minimize the drag coefficient c D. Optimisation Objectives Parameterisation c = ED: 4.8 to 7.0 m, za: 1.20 to 3.63 m, dxbc = BC : 0.26

文档评论(0)

183****7931 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档