爱上佛我佛可能去哦挖掘我让师傅看没看没法 (2).docxVIP

爱上佛我佛可能去哦挖掘我让师傅看没看没法 (2).docx

  1. 1、本文档共15页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
第一题:图像的滤波 在不使用中值与均值滤波的情况下对图像进行滤波 运用高斯滤波 import cv2 # ----------------------读取图片----------------------------- img = cv2.imread('030.jpg') # ----------------------高斯滤波----------------------------- result_5 = cv2.GaussianBlur(img, (5, 5), 0) # 5x5 result_9 = cv2.GaussianBlur(img, (9, 9), 0) # 9x9 # ----------------------显示结果----------------------------- cv2.imshow('origion_pic', img) cv2.imshow('5x5_filtered_pic', result_5) cv2.imshow('9x9_filtered_pic', result_9) cv2.waitKey(0) 第二题 手工编程实现bp算法分类 基于BP神经网络的鸢尾花分类(Python) 鸢尾花数据集包含4种特征,萼片长度(Sepal Length)、萼片宽度(Sepal Width)、花瓣长度(Petal Length)和花瓣宽度(Petal Width),以及3种鸢尾花Versicolor、Virginica和Setosa。 编程实现: import pandas as pd import numpy as np import datetime import matplotlib.pyplot as plt from pandas.plotting import radviz ''' 构建一个具有1个隐藏层的神经网络,隐层的大小为10 输入层为4个特征,输出层为3个分类 (1,0,0)为第一类,(0,1,0)为第二类,(0,0,1)为第三类 ''' # 1.初始化参数 def initialize_parameters(n_x, n_h, n_y): np.random.seed(2) # 权重和偏置矩阵 w1 = np.random.randn(n_h, n_x) * 0.01 b1 = np.zeros(shape=(n_h, 1)) w2 = np.random.randn(n_y, n_h) * 0.01 b2 = np.zeros(shape=(n_y, 1)) # 通过字典存储参数 parameters = {'w1': w1, 'b1': b1, 'w2': w2, 'b2': b2} return parameters # 2.前向传播 def forward_propagation(X, parameters): w1 = parameters['w1'] b1 = parameters['b1'] w2 = parameters['w2'] b2 = parameters['b2'] # 通过前向传播来计算a2 z1 = np.dot(w1, X) + b1 # 这个地方需注意矩阵加法:虽然(w1*X)和b1的维度不同,但可以相加 a1 = np.tanh(z1) # 使用tanh作为第一层的激活函数 z2 = np.dot(w2, a1) + b2 a2 = 1 / (1 + np.exp(-z2)) # 使用sigmoid作为第二层的激活函数 # 通过字典存储参数 cache = {'z1': z1, 'a1': a1, 'z2': z2, 'a2': a2} return a2, cache # 3.计算代价函数 def compute_cost(a2, Y, parameters): m = Y.shape[1] # Y的列数即为总的样本数 # 采用交叉熵(cross-entropy)作为代价函数 logprobs = np.multiply(np.log(a2), Y) + np.multiply((1 - Y), np.log(1 - a2)) cost = - np.sum(logprobs) / m return cost # 4.反向传播(计算代价函数的导数) def backward_propagation(parameters, cache, X, Y): m

文档评论(0)

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档