2.4质点的圆周运动.doc

  1. 1、本文档共6页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
2.4质点的圆周运动.doc

§2.4质点的圆周运动 刚体平面平行运动与定轴转动 2.4.1、质点的圆周运动 (1)匀速圆周运动 如图2-4-1所示,质点P在半径为R的圆周上运动时,它的位置可用角度θ表示(习惯上以逆时针转角正,顺时针转角为负),转动的快慢用角速度表示: 质点P的速度方向在圆的切线方向,大小为 ω(或v)为常量的圆周运动称为匀速圆周运动。这里的“匀速”是指匀角速度或匀速率,速度的方向时刻在变。因此,匀速圆周运动的质点具有加速度,其加速度沿半径指向圆心,称为向心加速度(法向加速度)。 向心加速度只改变速度的方向,不改变速度的大小。 (2)变速圆周运动 ω(或v)随时间变化的圆周运动,称为变速圆周运动,描述角速度变化快慢的物理量为角加速度 质点作变速圆周运动时,速度的大小和方向都在变化。将速度增量分解为与平行的分量和垂直的分量,如图2-4-2。相当于匀速圆周运动个的,的大小为 = 质点P的加速度为 其中就是切向加速度和法向加速度。 β为常量的圆周运动,称为匀变速圆周运动,类似于变速直线运动的规律,有 (3)圆周运动也可以分解为二个互相垂直方向上的分运动。参看图2-4-3一个质点A在t=0时刻从x正方向开始沿圆周逆时针方向做匀速圆周运动,在x方向上 在y方向上: 从x和y方向上的位移、速度和加速度时间t表达的参数方程可以看出:匀速圆周运动可以分为两个互相垂直方向上的简谐运动,它们的相位相差 2.4.2、刚体的平面平行运动 刚体平面平行运动的特征是,刚体上的任意质点都作平行于一个固定平面的运动。如圆柱沿斜面的滚动,即为平面平行运动。可取刚体上任意平行于固定平面的截面作为研究对象。 刚体的平面平行运动,常有两种研究方法:一种是看成随基点(截面上任意一点都可作为基点)的平动和绕基点的转动的合运动;另一种是选取截面上的瞬时转动中心S(简称瞬心)为基点。瞬心即指某瞬间截面上速度为零的点。这样,刚体的平面平行运动看成仅作绕瞬心的转动。 确定瞬心的方法有两种:如图2-4-4(a)所示,若已知截面上两点的速度,则与两速度方向垂直的直线的交点即为瞬心。或如图2-4-4(b)所示,已知截面转动的角速度及截面上某一点A的速度,则在与速度垂直的直线上,与A点距离为的点即为瞬心。 注意,瞬心的速度为零,加速度不一定为零。 2.4.3、刚体的定轴转动 刚体运动时,刚体上或其延展部分有一根不动直线,该直线称为定轴,刚体绕这一轴转动。刚体作定轴转动时,其上各点都在与轴垂直的平面内作圆周运动,各点作圆周运动的半径不同,在某一时刻,刚体上所有各点的角位移、角速度和角加速度都是相同的。而各点的线位移、线速度和线加速度则随各点离开转轴的垂直距离不同而不同。 2.4.4、一些求曲率半径的特殊方法 先看椭圆曲线,要求其两顶点处的曲率半径。介绍以下两种方法: (1)将椭圆看成是半径R=A(设A>B)的圆在平面上的投影,圆平面和平面的夹角满足关系式(如图2-4-5) 设一个质点以速率v在圆上做匀速圆周运动,则向心加速度,从上图中可以看出,当顶点的投影在椭圆的长轴(x轴)上的P点时,其速率和加速度分别为: , 当质点的投影在椭圆的短轴(y轴)上的Q点时,其速率和加速度分别为: 。 因此椭圆曲线在P、Q的曲率半径分别为: (2)将椭圆看成是二个简谐运动的合成,可以把椭圆的参数方程(设A>B)(如图2-4-6) 可改写为 即可进一步写出x,y二个方程的速度v和加速度a: 那么在长轴端点P处()的曲率半径: 在短轴端点Q处()的曲率半径 再把抛物线y=Ax,要求其任意一点的曲率半径(如图2-4-7)因为抛物线可以写作参数方程 其中,这样就可以导出 对任意一个t值: v= a=acos=a 所以这一点的曲率半径 将t=代入,可得 因为,所以抛物线y=Ax上任意一点的曲率半径 x y O P θ R 图2-4-1 P R 图2-4-2 O A R 图2-4-3 A B S A S (b) 图2-4-4 Φ x y p Q 如图2-4-5 Q P A B x y 图2-4-6 x y 图2-4-7

文档评论(0)

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档