一种应用于五轴激光加工的新型导向头.doc

一种应用于五轴激光加工的新型导向头.doc

  1. 1、本文档共8页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
一种应用于五轴激光加工的新型导向头 1 国内外发展现状 在五轴机床中,3个移动轴和2个旋转轴分别控制刀具相对加工表面的位移和指向。将此五轴按照不同顺序串联可获得多种布局,其中两旋转轴直连正交的布局具有特殊优点:①符合运动学思维习惯;②与两转轴非直连结构相比,旋转轴改变刀杆空间指向时,刀尖相对工件的位置偏移较小,减少了移动轴补偿;③后置处理计算简单,一般类似于球镜刀半径补偿。该布局具体分为两种:①两旋转轴共同驱动工件,即双转盘结构;②两旋转轴共同驱动刀具,其结构类似机械臂。前者的刀轴安装简单、刚性好,多用于机加工;而后者可获得更高的转角速度、更灵便,多用于激光切割等领域而被称为导向头。 导向头的典型结构如图1所示,旋转轴C、A与刀轴T相交于同一点,光束经过4次90°反射,从该几何交点射出,轴C和轴A分别控制刀具(或光束)的水平转角和俯仰角α,其光路与字符Ω形似,暂命名为Ω结构,以便表述。 图2是Ω结构的简化版本,其应用也十分广泛。因为缩短了光路,上述三轴无法相交于一点。其优点是结构简单易于制造和安装,并且光路损耗较小;缺点是后置处理比Ω结构复杂,加工曲面时,需要移动轴来补偿图中的偏心距LCA。同时,移动轴行程的利用率也被降低。 近年来,在激光切割领域处于领先地位的NTC(日平富山)和三菱等公司在其五轴激光加工系统中都采用了一种新型导向头(如图3),轴C按常规布置,另一旋转轴φ与轴C成45°角相交,刀轴T绕轴φ 旋转并与之保持45°。其光路与字符三形似,暂命名为∑结构。∑结构在国内相关领域尚不多见,其新颖的设计带来了许多优点,非常值得借鉴。 图3 光束导向头∑结构 2 ∑结构的运动学特性 如图3和图4,在∑结构中,轴C、轴φ和刀轴T相交于一点,并且在安装时保证刀尖(或激光焦点)精确位于该几何交点处。这就使得轴C和轴φ进行任意旋转时,刀尖位置不会被改变,因而在五轴联动过程中,加工轨迹的位置精度仅取决于三移动轴,而与两旋转轴元关。 通过与传统的Ω结构进行比较正结构的优点在具体应用中主要体现在: ①由于三系统的位置控制独立于转角控制,其位置精度的可靠性更高,这一点对于激光切割等加工尤其重要。因为加工中位置精度不仅决定了轨迹生成,还关系到导向头到工件表面的距离,这直接影响激光焦点和辅助吹气气嘴的位置,并最终影响切割质量,包括缝宽均匀性、切口平整性和背面挂渣状况等。此外,这一点对机床的安装和调试也十分有利。 ② ∑结构中各导轨行程得以完全利用,而Ω结构中移动轴的加工范围通常小于其导轨行程。 例如,考察Ω导向头加工图4中半径为R的半圆I-II-III-IV,其移动轴合成轨迹却是半径等于(R+Lr)的半圆(Lr为刀轴T的长度,图4中Lr=MII),因而,能够加工的最大工件半径相比立结构减少了Lr(暂且不考虑Z轴的行程限制)。 ③传统的Ω导向头与∑结构相比,对于同样的加工对象,耗时和耗能更多,而且移动轴被迫以更高的速度运行,这对于半径很小的圆弧(包括整圆)的加工尤为不利,分析如下。 目前激光切割通常采用吹氧辅助,为了实现切口平整、减少挂渣,切割速度较高,通常V≈15mm/s(薄板的对应速度更高)。在图4中,设R=lOmm, Lr=295mm,由几何关系可知,Ω导向头加工该半圆时,移动轴合成线速度为: VΩ=(Lr + R)V/R=450 mm/s 该速度超过了一般机床的移动轴速度极限,多轴联动时该速度对各移动轴的动态特性也有很苛刻的要求,无形之中增加了机床的硬件成本,而∑结构则避免了该问题。 ④立结构应用于机床的示教编程时特别方便。示教编程已经逐渐成为多轴加工机的必备功能,它可以在没有零件3D模型时,实现迅捷加工。示教编程时,一般只需获得移动轴坐标,基于移动轴坐标进行曲面重构之后,再可得到旋转轴坐标。 在曲面的任意点位上,∑系统均可直接获取移动轴坐标,而Ω结构则必须进行刀具半径补偿的逆运算。另外,示教时需要在各个点位上手动对刀,调整刀尖(或测头尖端)位置刚好与加工点接触,并且调整刀轴尽量沿着曲面法向,操作十分麻烦。由于∑结构的移动轴和旋转轴运动独立,其示教工作的劳动强度要大大低于0 结构。固立结构的刀路数据后置处理。 由前述分析可知,在3个移动轴方面,∑结构不需要特别的后处理,CAM软件基于零件3D模型生成的移动轴数据可直接用于后续加工,而Ω结构则需要进行后置处理,即在各移动轴原始数据上叠加对刀轴长度Lr的补偿。 而在两旋转轴方面,情况却相反。∑结构需要额外地对水平转角进行补偿。这是因为轴φ在改变刀轴的俯仰角α时,也同时改变了刀轴的水平转角θ,产生的附加水平转角偏移为△c(见图4),轴C必须对此偏移进行补偿。具体分析如下。 图4中,辅助线IIs平行于X轴,M’和N’分别为M和N在轴C-轴φ平面内的投影。定义C为连杆

文档评论(0)

LF20190802 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档